

Case back

The **CNC machining of case backs** requires stringent precision, surface finish and process reliability. The decisive factors are as follows:

1. Choice of materials and their machinability

- Typical materials: Stainless steel (e.g., 316L), titanium, brass, bronze or precious metals
- Machinability: Stainless steel is tough and tends to harden – requires sharp tools, proper cooling and stable processes
- Titanium is lightweight but difficult to machine (high tool wear, poor heat dissipation)
- Brass is easy to machine, ideal for high-precision work and fine details

2. Precision and tight tolerances

- Micrometre tolerances are standard (e.g., $\pm 5 \mu\text{m}$)
- Temperature compensation and machine accuracy are crucial
- Machines with glass scales and temperature stabilisation are preferred

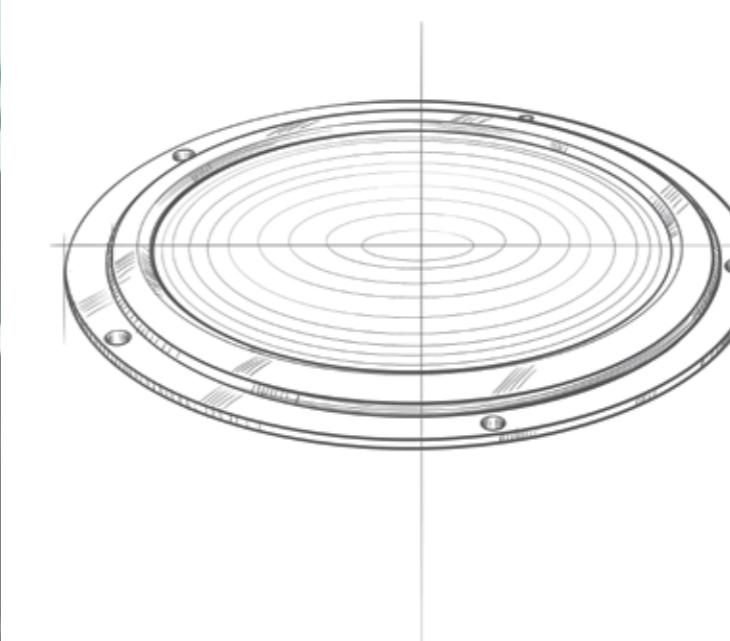
3. Tool selection and tool life

- Coated carbide tools (TiAlN, AlCrN) for hard materials such as stainless steel or titanium
- Monocrystalline diamond tools or CBN for precious metals or the highest surface finish requirements
- Tool life heavily depends on cooling, cutting parameters and material – short, controlled machining cycles are efficient

4. Cutting parameters and strategy

- Roughing with higher feed and lower depth of cut – with a focus on material removal
- Finishing with small depths of cut and fine feeds (often $<0.05 \text{ mm/rev}$)
- Strategies like HSC (High Speed Cutting) and trochoidal machining can reduce wear and heat

5. Clamping technology and vibrations


- Highly precise clamping devices (e.g., zero-point clamping systems, vacuum chucks for flat parts)
- Reduced vibration through short overhangs, rigid construction and optimal number of cutting edges
- Minimal deformations are critical – especially with thin-walled bases

6. Cooling and lubrication

- Minimum quantity lubrication (MQL) for sensitive materials and small components
- Emulsion or oil mist cooling for stainless steel to improve heat dissipation
- For titanium, targeted high-pressure cooling and heat dissipation are particularly important

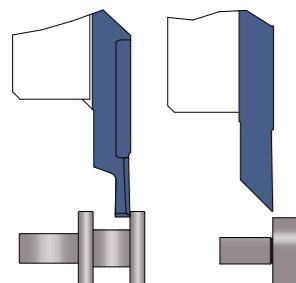
7. Surface quality and finishing

- Mirror-finish surfaces ($\text{Ra} < 0.2 \mu\text{m}$) are often required
- Finishing work by polishing, laser engraving, ultrasonic cleaning or coatings (e.g. PVD)
- Strategies such as “drawing” the finish through targeted milling paths or tangential tool application

Machining

2 SEALING LATCH MACHINING

SANDVIK Coromant
CoroCut XS


External machining in small-parts production

APPLITEC SWISS TOOLING

TOP-Watch 742SF

Various grooving and micro-turning operations

1 HOLE FOR FASTENING SCREW: SPOT DRILLING

magafor

Magaforce 819-D

Solid carbide micro CNC spot drill 90°, from Ø 0.3–2.5 mm

APPLITEC SWISS TOOLING

Micro-Line

Solid carbide micro CNC spot drill 60°/90°, with various special coatings

4 FULL-DEPTH THREAD MILLS

DC THREADING TECHNOLOGY

Thread mill GF6110VS-EX-SP
in accordance with NIHS 60-30

3 MICRO DRILLING IN DIFFICULT-TO-MACHINE MATERIALS

DIXI polytool

Twist drill 1137

Optimised for lead-free brass, polished clamping grooves: Improved chip evacuation, tapered core thickness from Ø 0.5 mm, reduced cutting forces, 140° tip: minimal burr formation at hole exit

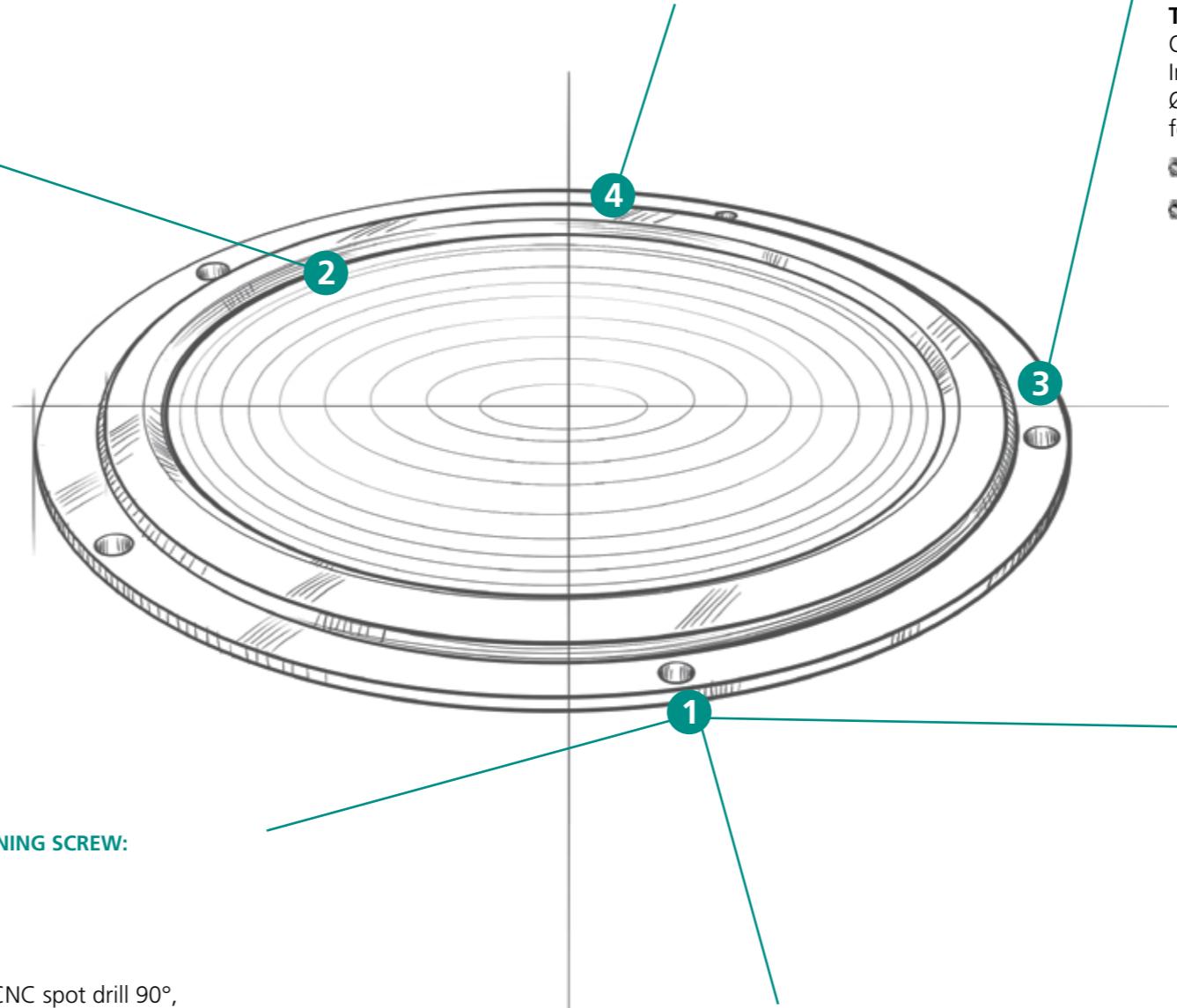
1 HOLE FOR FASTENING SCREW: MICRO-DRILLING

SANDVIK Coromant
CoroDrill 862 PCD

Offers longer tool life than solid carbide drills, suitable for challenging materials such as platinum and ceramic greenware, from Ø 0.3–3.0 mm

SANDVIK Coromant
CoroDrill 462 XM

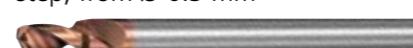
Versatile multi-material drilling with external cooling, from Ø 0.03–3.0 mm


SANDVIK Coromant
CoroDrill 862-GM-X2BL

Optimised multi-material, external coolant, solid carbide, from Ø 0.3–3.0 mm

SANDVIK Coromant
CoroDrill 862-GM-X2BM

Optimised multi-material, internal coolant, solid carbide, from Ø 1.0–3.0 mm



1 HOLE FOR FASTENING SCREW: MICRO STEP DRILLING

SANDVIK Coromant

CoroDrill Dura 862

Micro step drill for drilling and chamfering in one step, from Ø 0.3 mm

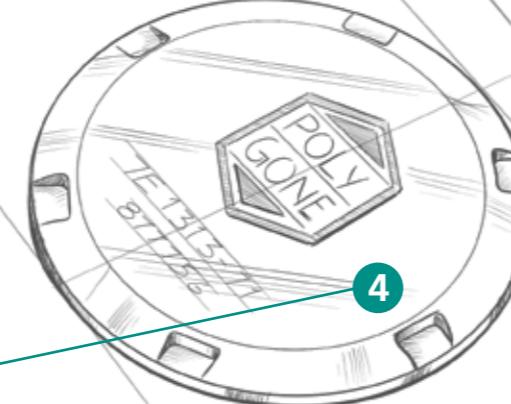
Finishing

3 HIGH-GLOSS ENGRAVING WITH SOLID CARBIDE

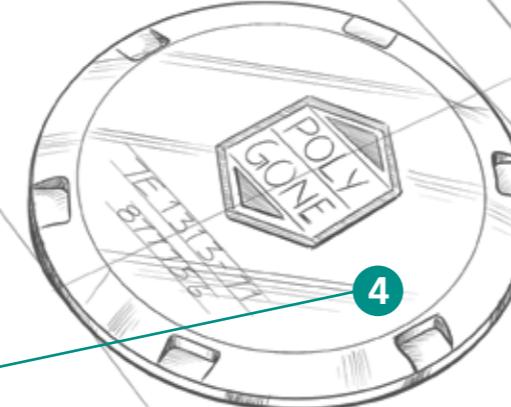
FUTURO

Solid carbide engraver's cutter type RSG / UMG

Reinforced solid carbide engraver's cutter
 $\varnothing 0.1$ mm/ $\varnothing 0.2$ mm, coated or uncoated


APPLITEC
SWISS TOOLING

Micro-Line


Engraving tools for universal use, available in various designs and coatings

3

4

4 MATTE ENGRAVING WITH PCD

DIXI
polytool

Engraving burin 70070-PCD

High-end PCD engraving burin, specially designed for matte engraving with $\frac{3}{4}$ geometry

DIXI
polytool

Engraving burin 70170-PCD

PCD engraving burin, specially designed for matte engraving

1 MULTI-OPERATION MACHINING

magafor

MAGAFOR MULTI-V

Chamfering, deburring, drilling, engraving, available in various angles 90°/40°/60°/120°, from $\varnothing 0.1$ mm

1

2

2 FINE ENGRAVING

APPLITEC
SWISS TOOLING

DLC engraving burin

Special thin-film DLC coating for an extra-sharp cutting edge

